
COMMANDER: FAST LIVE ACCESS TO MUSICAL COMMANDS

Tom Ritchford

Swirly Labs
76 North 7th St, Brooklyn, NY

ABSTRACT

Commander is an organizational system to allow a
performer with a limited interface to quickly and
intuitively execute musical commands of the most general
nature. Commander organizes commands into nested
cycles and allows fast, error-tolerant navigation without
much memory work on the part of the performer. While
this idea is applicable to any computer music performance
system, a reference Max For Live implementation in
Javascript is demonstrated as a MIDI effect that
dynamically controls an Ableton Live session.

1. INTRODUCTION

A computer musician performing today has potential
access to an unprecedentedly huge number of sounds and
effects, but in practice must spend long periods hunched
over the computer to access the desired musical material.
Three goals apparently conflict: the desire to access the
largest possible volume of material, the need to easily
move from scene to scene when prearranged sets are
needed, and the necessity that the performer be able to
recover gracefully from errors. Solutions are also
constrained by the limited number of mode or “program
change” buttons on many musical instruments, and the
limited ability of the performer to memorize long patch
tables.

Commander solves many of these issues neatly by
organizing named musical commands in nested, circular
lists called cycles.

Commands are nearly always reached by advancing a
cycle at some level – in the case of a pre-written song or
set, this allows for “one button operation”. Any given
command can be accessed in multiple ways at the
convenience of the performer, so it’s possible to quickly
reach a small set of very useful commands while still being
able to reach the entire universe of commands with only a
few more gestures.

An unlimited undo and simple navigation that makes it
intuitive as to how to “get back to where you were” handle
mistakes and encourages the performer to wander around
and experiment.

Commander stores its data as editable text files in the
JSON [6] format. In the reference implementation, you can

also edit the Commander data directly from Ableton Live
[3] while the system is running.

Commander data is by default stored in a single text file
but it’s perfectly possible to split it into multiple data files
where a central file includes others. This makes it easy to
create a set on the fly in a minute or two with just a short
text file that refers to each song. In fact, the Commander
“data” is in fact directly interpreted as Javascript code so
the venturesome performer has the full power of Javascript
and access to many utilities already written.

2. ABOUT THE REFERENCE IMPLEMENTATION
AND THE DEVELOPMENT ENVIRONMENT

The reference Commander implementation is written in
Javascript [1] residing in a js box in a Max For Live [4]
patch and can be downloaded at the Commander
homepage [7].

The Max For Live patch starts empty except for the js
box – the Javascript program creates, links and deletes user
interface elements in the patch as needed.

The code is broken into small files, each representing a
single Javascript function, a Javascript class, or even just
one method on a class. The files are combined using a
small Makefile [5] and gcc [2].

Unit tests are compiled and executed in a separate Max
patch that is not needed by the performer. For testing, the
Max/Max For Live environment is simulated by mocks, so
a test can examine the actual messages a program sends to
the outside world.

This development environment is discussed at greater
length in another article. [8]

3. DEFINITIONS

3.1. Commands

Let a command be some executable object or
description that somehow affects the internal program state
or external environment. The definition of a Command is
intentionally abstract; in the reference implementation, for
example, a command resolves to a Javascript function.
When executed, a command either returns nothing, or it
returns the inverse command – a command that undoes
what just happened. Inverse commands are saved on a
stack to allow later undoing.

3.2. Cycles

A cycle is either a leaf, containing only a command, or a
node, a non-empty ordered list of cycles together with a
selected index to the selected cycle in that list. Both leaf
cycles and node cycles have an optional string name.

Given some descendent cycle recursively contained in
an ancestor cycle, we define the level between them to be
zero if the two cycles are the same, or, recursively, one
plus the level between the descendant’s parent cycle and
the ancestor.

A fixed level cycle has a fixed level between all its
leaves and itself. We’ll assume that all cycles are fixed
level unless otherwise noted, and talk freely about this
fixed level as the level of a cycle.

The selection for a cycle is the sequence of cycles
obtained by taking the selected cycle recursively until a
leaf is reached. We talk about the leaf being at the bottom
of the selection at level 0 and the original cycle as the top
of the selection. Because of the fixed depth condition, and
the condition that node cycles are always non-empty, the
length of a cycle’s selection is one greater than its level.

4. ADVANCING NODES AND SELECTIONS

Advancing is the fundamental operation in Commander.
Advancing a node simply increments the node cycle’s

selected index, using modular or circular arithmetic so the
selected index always within list index boundaries.

Advancing a selection advances the cycle containing a
specific level in a selection, thus changing all levels in the
selection below that cycle, then executes the command that
has now appeared on the bottom of the selection.

Advancing a selection with carry has the additional
property that when the selected index in the cycle wraps
around to 0 again, the cycle in the level above, if any, is
advanced as well. Repeatedly advancing a selection with
carry at level 0 will iterate through all the cycles

The definitions above logically extend to advancing a
cycle or selection with an increment greater than one or
less than zero.

Advancing a selection is the industrial-strength
operation that makes Commander useful. While there are
editing commands for cycles and selections, it’s
anticipated that for larger projects with complex scores the
performer would prepare everything as text files and use
only Advance commands in the final performance.

5. NAME TABLES AND DATA CONTEXTS

A name table is an associative array that maps string
names to commands or cycles, preventing the performer
from having to look up tables of cycles, program changes,
controllers or other numerical data when creating an
Commander data file. Name tables are also stored as JSON

text files; this makes it easy to copy data like a program
change table from a manual and edit it into the right
format.

A name table is a kind of data definition, a generic
facility for adding new symbols and functions to the
context used to interpret data files. As mentioned above,
our data files are stored as JSON files. Javascript, the
language of our reference implementation, as well as other
languages like Python allow you to evaluate this JSON
data within a data context, a collection of data definitions,
each of which is an assignment of a values to a named
variable that can be later used in the Commander data file.

Data values need not be static data: values can be
functions, and in the reference implementation the data
values could even be fragments of Javascript, though it’s
recommended to separate the code from the data for many
reasons (if nothing else, because it’s hard to write code
fragments back out to a data file if you’re editing on the
fly).

6. USER INTERFACE AND DISPLAY

Because of the stripped-down nature of Commander, only
a small display is needed. Indeed, the program has been
used to run shows where the performer is unable to see the
display at all.

More typically, the interface just shows the selection
with a few controls for each cycle.

Figure 1. The user interface of Commander’s reference

implementation, as seen in Ableton Live.

In Figure 1, cycles in the selection are listed from top to

bottom: a node cycle named “sax” contains a node cycle
named “soprano” which contains a leaf cycle with a
command named “SoprnoSx”. The up and down arrows to
the left of the cycle names Advance the cycle forward and
back. These may be mapped to some external controls
using the facilities of the hosting system - in the reference
system, that facility is Ableton Live’s “MIDI mappings”
table, though there is special-purpose code to work around
the issue that Live’s MIDI mappings don’t respond to
program changes.

Figure 2 shows the same user interface after Advancing
the top cycle. Note that all the cycles in the selection have

changed; if the bottom cycle had been Advanced, only it
would have changed.

Figure 2. The user interface after Advancing the top

cycle.

The + and – buttons to the right of the cycle names add

and delete new cycles (a text box will appear to edit the
command definitions when you add a new leaf). In
practice it’s unnecessarily cumbersome to build cycles or
edit from the user interface and much faster to make
changes to the JSON text file, so these buttons see little
use.

7. EXAMPLES

A single performer has just three program change buttons
but a large number of sound patches and so decides to
organize them hierarchically into three levels.

Group Type Patch
string violin Bright Violin
 Pizz Violin
 Gypsy Violin
 cello Bowed Cello
 Plucked Cello
bass electric Fender Bass
 synth Moog Bass
 Arp Bass
percussion drums WX Drums

Table 1. Example sound patches.

For simplicity, Table I only has a handful of patches but
the author’s own patch cycles contain hundreds of
programs in dozens of categories.

Let’s call these four buttons 0 through 2 and assign
them to Advance the cycles at level 0 through 2 (without
carry).

Initially, the performer has selected Group “string”,
Type “violin”, and Patch “Bright Violin”. Pressing button
0 from this state will cycle through the three violin patches
“Bright Violin”, “Pizz Violin”, “Gypsy Violin” repeatedly.

Pressing button 1 will cycle through the two types of
strings, “violin” and “cello”. Note that when we return to
the cycle “violin”, we also return to the most recent patch

selected within that cycle – the selected cycle does not
reset itself just because we leave and re-enter that cycle.

Finally, pressing button 2 Advances through the three
cycles “string”, “bass” and “percussion”. Note that
“percussion” contains just a single cycle “drums” which
contains a single cycle, “WX Drums”, so if your top-level
cycle is “percussion” then neither button 0 nor button 1
will have any effect (they’ll try to advance a cycle of size
1).

{
 ‘string’: {
 ‘violin’: {
 VL[‘Bright Violin’],
 VL[‘Pizz Violin’],
 VL[‘Gypsy Violin’],
 },

 ‘cello’: {
 VL[‘Bowed Cello’],
 VL[‘Plucked Cello’],
 },
 },
 // …more entries here omitted.
}

Table 2. An example of a Commander data file.

Table 2 shows the JSON data file that represents the
Commander session described in Example 7.1. The
symbol “VL” is an example of a name table, in this case
representing patches for a specific instrument. While the
name table in this case only selects a patch for an external
instrument, it’s important to remember that a command
can be any operation or list of operations at all: the
reference implementation allows the performer to specify
almost any change to the Ableton Live environment by
using the facilities of Max For Live.

‘VL’: {
 ‘Moog Bass’: BankPC(1, 56),
 ‘Bright Violin’: BankPC(1, 75),
 ‘Pizz Violin’: BankPC(2, 15),
 ‘Gypsy Violin’: BankPC(1, 74),

 // …more entries here omitted.
}

Table 3. An example of a Commander name table

Table 3 shows a section of a name table for a single
instrument. It uses the name BankPC from the data

context, a function which sends out MIDI bank changes
and program changes to a MIDI instrument.
{
 ‘patches’:
 Read(‘patches/patches.data’),

 ‘songs’: {
 ‘a-train’:
 Read(‘songs/a-train.song’),

 ‘Help’:
 Read(‘songs/help.song’),

 // …more entries here omitted.
 }
}

Table 4. A Commander data file that includes other files.

Table 4 shows how to read external files from a data
file. Data files and cycle definitions from one project can
be included entirely inside another project – for example,
the file patches.data could be exactly the file referenced in
Table 2. The same facility is used to load name tables or
even new functions into Commander without having to
change the original program.

8. REFERENCES

[1] https://developer.mozilla.org/en/JavaScript
[2] http://gcc.gnu.org/
[3] http://www.ableton.com
[4] http://www.ableton.com/maxforlive
[5] http://www.gnu.org/software/make/manual/make.htm

l
[6] http://www.json.org/
[7] http://www.swirly.com/commander
[8] Ritchford, Tom, “Rapid Development of Large,

Reliable Music Programs In Javascript and Max”,
unpublished essay, 2010

